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Abstract  

In this article we explore a methodology based on unsupervised learning that aims at automatically 
classifying the arguments of a verb, a classification crucially important in the process of sense 
isolation in lexicographic projects. More concretely, we strive to exploit the lexical semantic 
information obtained by combining a clustering algorithm with Word Embeddings and argue that the 
combination of both represents a fertile methodological ground for automatically classifying the 
selectional behaviour of a predicate. From the perspective of practical lexicography, our methodology 
should help to significantly shorten the time invested in isolating context-related senses of a predicate, 
in our case a verb. In particular, we illustrate, based on a case study of two Spanish verbs, how our 
methodology can provide a lexicographer with a general picture of a verb’s behaviour in a corpus and 
argue that the clusters we provide automatically encode insightful generalizations that facilitate the 
process of decision taking of a lexicographer about which senses are most common for a particular 
predicate, according to the different types of contexts it is most frequently used in.   
Keywords: practical lexicography; selectional restrictions of verbs; automatic clustering of 
arguments; Word Embeddings; k-means  

1 Introduction 

Over the last two decades more and more work has been pointing out that the selectional restrictions 
of predicates, which semantic theory has assumed to represent compositional patterns of 
predicate-argument combinations, do not take into account much of the data actually occurring in 
real language use. Several works, stemming mainly from the discipline of lexicology and 
lexicography (Bosque 2004,  Hanks & Jezek 2008, Hanks 2013, Spalek 2014), have contributed to 
showing that argument selection paradigms of predicates are much bigger and more diverse than 
commonly assumed in theoretical approaches to the lexicon. Thus the following Spanish corpus 
examples of uses of the verb cortar “cut”, from Spalek (2014), illustrate that it is natural for cortar to 
combine with a complement denoting a physical object, as in (1), along with distinct kinds of events 
(2), locations (3) and other entities (4):  
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(1) La policía cortó las cadenas. 
the police cut the chains 
“The police cut the chains.” 

(2) Francia corta la entrega de etarras. 
France cut the extradition of ETA members 
“France stopped the extradition of ETA members.”  

(3) La policía cortó  los puentes que unen sobre el río Vitava la Parte Vieja de Praga con la 
Parte Pequeña. 
the police cut the bridges that unify over the river Vitava the old part of Prague with the 
small part  
“The police blocked the bridges over the river Vitava that unify the old part of Prague with 
the small part.” 

(4) Un encargado se refugió en el interior del establecimiento y cortó la energía eléctrica. 
a site manager himself hid in the interior of the establishment and cut the energy electric 
“A site manager took refuge in the interior of the establishment and cut the electric 
energy.”   

At the same time this work has shown that selectional restrictions are not random, but represent 
concrete clusters, although the actual restriction paradigms look very different from what semantic 
theory has taught us to think. All this pioneering work accounting for combinatorial paradigms of 
predicates has been based on manual corpus annotation conducted by linguists and lexicographers. 
That is, generalizations about relevant argument clusters for a particular predicate have been built on 
human insights upon the observation of the behaviour of a verb in texts. This theoretic linguistic 
debate on the nature of selectional restrictions of predicates has its natural counterpart in practical 
lexicography in the task of classifying the combinatorial behaviour of verbs into patterns that can 
potentially lead to the classification of relevant senses of a verb (See Hanks 2004 for a methodology). 
A lexicographer involved in defining the senses of a verb devotes much of his/ her time to classifying 
prototypical contexts in which the predicate appears, such as the ones illustrated in (1) through (4), in 
order to identify the senses of this predicate. Parallel to these concerns about selection restrictions 
coming from theoretical and applied linguistics, evidence from computational linguistics dealing 
with big data has started to show striking patterns of word uses in natural language, the details of 
which have only started to be explored more deeply in the last decades.  

Under the assumption that patterns of usage of predicates can be analysed and applied in 
lexicography as a means of discriminating lexical meanings, the present work explores to what extent 
selectional clusters can be identified automatically. It is worth mentioning here that we are not 
attempting to identify the meaning of a verb as a word in isolation, but rather to explore a 
computational method for automatically highlighting potential meanings of the verb associated with 
its prototypical contexts. Our effort thus focuses on defining a methodology for unsupervised 
learning of selection restrictions of predicates. From the viewpoint of practical lexicography, we 
believe that providing a lexicographer with these semantically motivated automatic groupings of 
verbs’ arguments will have major implications for the creation process of lexicographic projects. 
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From a computational perspective, our work strives to show that human-driven insights on 
selectional restrictions of predicates can be captured to a significant extent when relying on Natural 
Language Processing methods like Distributional Semantic Models (DSMs) (Harris 1954). More 
concretely, we use vector representations of words to explore whether the semantic groupings 
suggested in manual small-scale works such as Bosque (2004) or Spalek (2014) could be identified 
automatically on a large scale too. Our work is an advance on previous work in two crucial respects:  
1. Based on a case study, we provide a comparison of manually-obtained clusters (Spalek 2014) with 
clusters gained through unsupervised learning methods.  
2. Our case study illustrates that the combination of a clustering algorithm and Word Embeddings 
serves as a methodology for the automatic identification of selectional restrictions. 

2 Methodology for Automatically Detecting Selection Restrictions 

While lexicography has been slow in responding to the challenges as well as possibilities presented 
by big data, computational linguistics has been advancing quickly in analytical data processing 
methods such as Word Embeddings1 or clustering algorithms. Clustering and classifications are two 
common methodologies in computational linguistics. While in classifications the classes to which 
input instances are assigned are previously defined by humans, and information about these classes is 
part of the input the algorithm receives, in unsupervised learning clusters are inferred by the 
algorithm. That means that the main task of unsupervised learning is finding a structure in the data by 
drawing inferences from datasets consisting of input data without labels and returning clusters of 
similar objects. (For an overview on clustering algorithms see Aggarwal and Cheng, 2012.) Given 
that these clustering algorithms have proven to be particularly relevant for the creation of lexical 
classes (Romeo et al., 2013) as well as for figurative language detection (Del Tredici and Bel, 2015; 
Shutova and Sun, 2013), we have chosen them as most relevant for our purposes. Our methodology 
thus takes advantage of the advances made in Word Embeddings and clustering algorithms and tests 
these methodologies against human-driven practice, as know from practical lexicography. 
 
In the first step of our method, we extracted the list of arguments for our two target verbs, equivalent 
to the verbs used in the manually annotation of Spalek (2014), namely cortar, English ‘cut’ and 
romper, English ‘break’. The present study was limited to the target verbs studied by Spalek (2014) 
since that study provided concrete results against which our results could be contrasted. Our working 
corpus, the IULACT corpus (Palatresi 2009), was limited only to the general corpus compiled from 
Spanish newspapers. This was done to keep the composition of the corpus as similar as possible to 
the corpus used in Spalek (2014).  
 
Secondly, for the obtaining of automatic groupings of arguments with high semantic similarity, 
analogue to the manual groupings in other studies (Bosque, 2005 or Spalek, 2014), we used vector 
representations proceeding from Distributional Semantic Models2. In general, DSMs employ vectors 
                                                           
1 Word Embeddings are vector representations of words: each word is associated with a vector, which corresponds to a 
point in a multidimensional space. The distance between the points in space is a function of the similarity of the words. 
Mathematically that means that the closer two vectors, the more similar are the words they represent.  

2 DSMs are based on the distributional hypothesis (Harrys 1954), whereby semantically similar words tend to have 
similar contextual distributions 
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that keep track of the contexts in which target terms, in our case cortar and romper, represent the 
meaning of words as points in a vector space. Employing a DSM thus allowed us to measure the 
similarity in the meaning of different words using geometric techniques such as cosine similarity 
(Baroni,  Dinu and Kruszewski 2014). As an example, the word cristal, (“glass”), turned out to have 
higher cosine similarity with the word ventana, (“window”), than with the word silencio, (“silence”). 
Among several available DSMs, we chose Word Embeddings (WEs), a neural-network based vector 
representation in which words are embedded into small-size vectors (Mikolov 2013). This choice 
was based on the observation that WEs have been attested to be extremely efficient in mapping 
meaningful syntactic and semantic information of words. In addition, recent works (Baroni, Dinu and 
Kruszewski 2014; Del Tredici and Bel 2014) have argued that WEs, in contrast to other DSMs, are 
currently considered to be most appropriate for word representations. For our study, WEs were 
implemented on the Spanish section of the freely available Wikicorpus (Reese 2010), which contains 
around 120 million words and is annotated with lemma, part of speech information and word senses. 
Adopting common practice, we ignored words that were rare (less than 150 occurrences) in the 
training corpus (Mikolov 2013). Our clustering algorithm was run on this corpus in order to create 
groups of similar arguments for the verbs cortar and romper. We considered two different options to 
perform this task: k-means and hierarchical clustering.  

K-means is a partitioning method widely used in Natural Language Processing (NLP) for its 
effectiveness and its low computational complexity. The algorithm takes as input a number of objects 
and returns as output a set of clusters, where similar objects are assigned to the same cluster, and each 
object can belong to just one of these clusters (hard clustering). K-means is said to be partitional (or 
flat) because, unlike hierarchical clustering (see below), it returns a flat set of clusters in which 
clusters are not organized in a hierarchical structure. At the core of the algorithm is the idea of 
centroid, which can be defined as the central point of a cluster. Before running the algorithm the user 
has to define the number k of centroids, which corresponds to the number of clusters returned as the 
output. With the k value as input, the algorithm randomly instantiates k centroids in the semantic 
space (see the grey crosses in Figure 1). The final objective of the algorithm is to adjust the position 
of the centroids (dotted grey lines in Figure 1) so that they end up in a position where all the points in 
each cluster are as near as possible to their centroid (black crosses in Figure 1). This is achieved by 
performing many iterations, and adjusting the position of the centroid during each iteration. The 
algorithm stops when no more adjustments are possible. When working with k-means, the number of 
clusters for the output has to be defined before running the algorithm. Given that in Spalek (2014) the 
number of clusters had already been defined, in order to perform a fair evaluation, we set the value of 
k for each target verb equal to the number of clusters defined there: k = 11 for romper and k = 14 for 
cortar. However, this is not always possible. In fact, this is a well-known problem in the NLP 
community to which many diverse solutions have been proposed. The most common one is based on 
the usage of external metrics, which are employed to assess the quality of the clusters in different 
clustering solutions. The basic idea is to perform k-means with several values of k, and then choose 
the value for which the best set of clusters has been obtained. Despite the fact that this kind of 
methodology requires a high number of iterations, it is still feasible given the low computational 
complexity of the algorithm. As an external measure to evaluate the quality of the clustering, we 
propose the Silhouette score (Rousseeuw, 1987), a widely employed metric for the interpretation and 
validation of clustering results which gives in output a value between –1 and 1, where the maximum 
value (1) indicates that objects in the same clusters are highly similar (high cohesion) and at the same 
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time, highly different from those in other clusters (high separation). 

 
 
 
Figure 1 An example of k-means clustering, where k=3. Grey crosses indicate the position of the centroids before the first 
iterations. After many iterations, centroids are moved (dotted lines) untill they end up in a position where all the points in 
each cluster are as near as possible to their centroid. 

 
Hierarchical clusters are an alternative option, differing from the flat output returned by the k-means 
algorithm. These give as output a hierarchical structure (also called “dendogram”) that provides a 
wider overview on how the objects in the dataset are related to each other, showing the relations of 
hyponymy/ hyperonym among them. This kind of algorithm implements a bottom-up approach, in 
which each word is initially considered as a single cluster. The algorithm performs many iterations 
and during each iteration, the two most similar clusters are merged in a new cluster, which thus 
creates a hierarchy. Iterations are repeated until only one cluster, including all the words, is created at 
the top of the hierarchy. The higher the level in the hierarchy, the smaller the number of clusters and, 
consequently, the larger the size of the clusters. As a result of applying this algorithm, we find that, 
depending on their position in the hierarchy, clusters differ in their degree of granularity. Clusters at 
the bottom of the hierarchy are fine-grained and thus include only highly similar vectors (e.g. 
electricidad ‘electricity’ and energía, ‘energy’ with respect to the verb cortar, English cut). Towards 
the top, clusters are more coarse-grained. This means that the vectors they include are still related but 
less similar (e.g. electricidad ‘electricity’ and luz ‘light’, see Figure 2). Compared to k-means, 
hierarchical clustering has the advantage that the number of clusters in the output does not have to be 
defined before running the algorithm. Thus, it is common practice to observe the resulting hierarchy 
and choose the best level of granularity needed for the specific purposes of the research, and select 
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the set of clusters at that level. However, hierarchical clustering presents an important disadvantage 
compared to k-means, namely its computational complexity: this simply means that this algorithm 
requires a great deal of computing power, which is not always available, and which, even if available, 
makes the algorithms slow for large datasets. As for the present research, it should be noted that 
despite the differences between the two algorithms, if both are employed with the appropriate setting 
on the same dataset, they are expected to output similar results. That is, what we expect is that the 
best flat set of clusters returned by the k-means algorithm will approximately correspond to the most 
suitable level of the hierarchy for our specific research purpose. Thus, considering the two 
methodologies as equivalent, our decision on which one of the two to pick favoured computational 

simplicity and we considered k-means a better choice. 

Figure 1 Simplified example of a hierarchy obtained with hierarchical clustering. Words to be clustered are the leaves of 
the tree (in this case, the labelled leaves are luz ‘light’, electricidad ‘electricity’ and energía, ‘energy’). During the first 
iteration the algorithm creates small clusters including the couple of words with the most similar vector representation 
(e.g. electricidad  and energía). The output of the first iteration is the 1st level of the hierarchy. Cluster at this level are 
very fine-grained. At the second iteration of the algorithm, a cluster in the 1st level is merged with the most similar cluster 
at the same level in order to create a larger cluster (in the example, the cluster including electricidad and energía is 
merged with the one including luz). The output of the iteration is the 2nd level of the hierarchy. Clusters at this level are 
more coarse grained, meaning that the similarity among the words they include is lower compared to the similarity of the 
words in clusters at the 1st level. The same procedure is repeated for subsequent levels of the hierarchy, until all the words 
are included in the same cluster (top of the hierarchy). 

 

3 Results and Discussion 

In the previous section we presented two different algorithms to perform clustering (k-means and 
hierarchical clustering) and argued for employing k-means, setting the value of k for each target verb 
equal to the number of clusters defined in Spalek (2014). In this section we present the results of 
applying our methodology and critically evaluate them, contrasting them with the results stemming 
from a manual clustering process, such as in Spalek (2014).  
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Firstly, our study confirms the observations of previous studies (Bosque 2004, Hanks and Jezek 2008, 
Spalek 2014), namely that abstract entities denoting arguments effectively outnumber physical 
objects as direct objects of change of state verbs, and that this is the case even when extending the 
sample to a large corpus, as we did for this study. More specifically, for romper we found that 16.2% 
of typical arguments were physical objects, while 83.8% corresponded to abstract objects. For cortar, 
physical objects represented 30.7% and abstract objects 69.3%. Our results thus contribute to 
emphasise the highly different percentages of abstract and concrete arguments as typical 
combinatorial patterns of verbs. The fact that reaching out to big data clearly shows that verbs so 
significantly and naturally select for all kind of abstract-object-denoting nouns is not entirely new but 
is challenging, in as far as the assumptions usually made in theoretical linguistics that verbs refer to 
events in the physical world has led many theoretical linguistic models to ignore much of the real 
data. At the same time this fact provides the lexicographer with a very general insight that transitive 
verbs have crucially two meaning options: 1) they denote physical events and 2) they denote abstract 
events.  
 
Secondly, taking under examination some well-studied data from previous work (Spalek, 2014), our 
study shows that it is possible to obtain semantically consistent clusters of verb arguments by 
applying our methodology. More concretely, the methodology presented here allows us to 
automatically identify semantic clusters of arguments that potentially pick out distinct meanings of a 
predicate. For the verb cortar “cut” the automatically found clusters of arguments correspond to 11 
out of the 15 argument groups in Spalek (2014): [Physical Object], [Food], [Body Part], [Location], 
[Continuous Stream], [Event], [Time Interval], [Process], [Relation], [Human | Group], [Feeling]. 
The missing three clusters were either empty or irrelevant. For romper, English “break”, the 
automatically generated groupings of arguments coincided with 10 out of the 11 identified in Spalek 
(2014): [Physical Object], [State], [Norm], [Doctrine], [Relation], [Act], [Process], [Time Interval], 
[Group], [Human | Group]. Comparing our clusters in more detail to the clusters found in previous 
work, our semantic groupings of arguments are in fact similar in content to what has been identified 
in the manual annotation of Spalek (2014), although some significant differences have to be 
mentioned: when running statistical purity tests, comparing the lexical clusters found in Spalek (2014) 
to the ones automatically identified by the clustering algorithm, we obtain a purity of 0.6. That means 
that the manual classification and the automatic clusterings are indeed significantly different. A 
relevant observation at that point, however, is that the groupings in Spalek (2014) – our comparison 
class – are not hard categories, but could actually be redefined in a different way. A good example to 
explain the differences in the classification is the noun silencio, (“silence”). In the classes of Spalek 
(2014) silencio was classified as a member of the semantic group [State]. Our automatic cluster, 
however, classified silencio together with other words denoting processes ([Process]). This 
difference in classification, rather than representing an incorrect clustering, seems to point out a 
problem proper to the category of abstract nouns. These nouns seem to group into clusters in a 
relatively lax way (See also Hands and Jezek (2008) for a similar observation) and can therefore 
naturally be classified in different clusters. Nouns referring to physical objects, in contrast, seem to 
cluster together very consistently, be it in the manual annotation or in the automatic classification. 
This observation is supported by the fact that the percentage of purity of the cluster identified by the 
clustering algorithm that groups together physical objects includes no errors whatsoever, while other 
clusters did include some misclassified elements. Furthermore, for many other arguments denoting 
abstract events and entities we also attribute the relatively low purity to the fact that Spalek (2014) 
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used a different corpus, and many of the integrants of the clusters we have identified automatically 
are not semantically irrelevant to the clusters they are members of, but rather just absent from the 
sample manually annotated by Spalek (2014). When reviewing the semantic quality of our 
automatically identified clusters, we still find that they are consistent in grouping semantically 
similar words. For this reasons we take the clusters created by the algorithm as an alternative to 
Spalek (2014), rather than considering them to be wrong.  

Most importantly, however, the argument clusters identified automatically in our work can 
effectively be correlated with the examples analysed by Spalek (2014) ((1) through (4)). Thus 
example (1) clearly corresponds to our cluster of [Physical Objects], example (2) represents a 
member of our semantic group of [Events], example (3) represents the group we have labelled 
[Location], and example (4) represents our cluster of [Continuous Stream]. This is to say the 
automatically identified clusters are significant, since they clearly help to identify different senses of 
the verb, which is of interest for lexicographic praxis. More concretely, a look at the definition of 
cortar in the dictionary of the Spanish Royal Academy (DRAE) reveals that the clusters identified 
can actually be correlated with different senses provided in the DRAE. Thus, the clusters [Physical 
Object] and [Body Part] can be correlated with the separation sense of cortar (sense 1), the [Food] 
cluster can be correlated with the division-into-pieces sense (sense 5), the [Location] cluster can be 
associated with the blocking sense (sense 9), the [Event] and [Process] cluster can be related to the 
meaning of interruption (sense 16), the [Time Interval] cluster points at the sense of shortening (sense 
8) and the [Human Group] can be correlated with the meaning cut off a speaking person (sense 10).
Finally our algorithm also identified another minor cluster that grouped together nouns referring to 
feelings that points to the sense of becoming shy (sense 27).  

For a critical evaluation of our methodology and how relevant are the automatically identified 
clusters we can say that, in the current state of the methodology, automatic clustering is both 
outperforming and underperforming to a certain extent. It outperforms, with respect to the current 
definition of cortar in DRAE, in that it found some clusters that are not present in the DRAE. Thus 
our cluster [Relation] points to a very common use of cortar referring to the break-up of relations, as 
a sense that other Spanish dictionaries do include. Similarly the [Continuous Stream] cluster consists 
of members such as electricidad “electricity”, energía “energy” or gas “gas” for which cortar refers 
to events of cutting off the supply of any of them. This is also a sense commonly used in other 
dictionaries while lacking from the DRAE. At the same time our methodology does not seem to be 
exhaustive. For instance, no cluster corresponding to substances was found. Although not being one 
of the most important senses, many Spanish dictionaries, as well as Spalek (2014), include this sense 
as an event of cortar denoting the dilution of a substance. In the DRAE this use corresponds to senses 
14 and/ or 15.   

Summing up the results so far, it seems that, despite several shortcomings, our methodology for the 
automatic identification of selection restriction of verbs seems to provide the lexicographer with a 
first general overview of the behaviour of a predicate, an essential basic step for a lexicographic 
project that starts from scratch. Our prediction here is that implementation of our methodology would 
improve and speed up the process of lexicographic work based on corpora, for it automatically picks 
out the typical combinatorial paradigms of a predicate. This valuable first general picture can then be 
further refined by information from introspection or comparison to other lexicographic projects to 
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fully account for all possible senses of a predicate.  

4 Some Relevant Remarks for the Theory of Word Meaning 

The results emerging from our study also serve as insightful input for theoretical approaches to the 
lexicon. Given that much of the linguistic literature on verb meaning in the tradition of theoretical 
linguistics has focused on analysing verb uses when they describe events in the physical world,  
theoretical linguists has ended up postulating selectional restrictions limited to events describing the 
physical world only. Consequently, the verb’s combinatorial capacity has been restricted by default to 
nouns denoting physical entities. And though referential approaches to semantics have proven very 
successful at providing meaningful analyses for a wide range of natural language data, lexical 
meaning has largely eluded insightful treatment when verbs refer to events that go beyond the 
physical world. As a matter of fact, however, our large-scale clustering of arguments of a verb 
illustrates that the range of combinatorial contexts of a verb vastly surpasses the domain of physical 
entities. This fact has previously become evident at a smaller scale with the publication of the 
combinatorial dictionary of Spanish, REDES (Bosque 2004), which provides the user with the lexical 
classes (“argument clusters” in our terms) of semantic notional groupings of the inventory of 
arguments attested for a particular verb. For the Spanish cortar, REDES lists 13 lexical classes of 
arguments. This is very close to the number of groupings identified in Spalek (2014) as well as the 
number of clusters that turned out to be relevant in our case study.  

From a theoretical point of view our work contributes to evidence that just about every simple 
transitive verb expresses a wide range of predicates depending on the variety of direct objects it can 
take. Probably not surprisingly for lexicographic praxis, nor from the computational perspective, but 
new to theoretical approaches to lexical meaning, only two lexical classes in REDES entry for cortar 
correspond to physical objects, while the rest of the classes are distinct kinds of abstract arguments. 
Thus our enterprise of finding a methodology that lets the company of a predicate tell us what senses 
a predicate can have reinforces the conclusion of theoretical studies that there is an urgent need to 
take seriously big data proceeding from corpora when elaborating any models of word meaning.  

5 Conclusions 

Our study has united insights from theoretical linguistics with the praxis of lexicography as well as 
current methods in computational linguistics to explore an innovative methodology that enhances 
lexicographic work by automatically extracting the compositional patterns of a predicate in real text. 
Using a cluster algorithm and Word Embeddings has turned out to be a fertile method for providing 
quick insight into the possible variety of senses of one predicate in direct relation to its arguments. 
We thus hope to have suggested a practical way to use unsupervised learning methods to deal with 
big data in lexicographic projects with the potential for significant saving of time.  
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